Documentation

LeanStlc.Term

inductive Ty :
Instances For
    def Ty.repr (a : Ty) (p : Nat) :
    Equations
    Instances For
      instance instReprTy :
      Equations
      inductive Term :
      Instances For
        def Term.repr (a : Term) (p : Nat) :
        Equations
        Instances For
          Equations
          @[simp]
          theorem Term.var_def {x : Nat} :
          var x = #x
          @[simp]
          theorem Term.var_eq {x y : Nat} :
          (#x = #y) = (x = y)
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            Instances For
              @[simp]
              theorem subst_var {x : Nat} {σ : LeanSubst.Subst Term} :
              #x[σ] = match σ x with | LeanSubst.Subst.Action.re y => #y | LeanSubst.Subst.Action.su t => t
              @[simp]
              theorem subst_app {σ : LeanSubst.Subst Term} {t1 t2 : Term} :
              (t1 :@ t2)[σ] = t1[σ] :@ t2[σ]
              @[simp]
              theorem subst_lam {σ : LeanSubst.Subst Term} {A : Ty} {t : Term} :
              (:λ[A] t)[σ] = :λ[A] t[σ.lift]
              theorem apply_stable {r : LeanSubst.Ren} {σ : LeanSubst.Subst Term} :
              r.to = σr.apply = σ.apply
              theorem apply_compose {s : Term} {σ τ : LeanSubst.Subst Term} :
              s[σ][τ] = s[σ τ]
              inductive Neutral :
              Instances For