Documentation

LeanSubst.Map

def LeanSubst.Subst.map {A : Type u_1} {B : Type u_2} (f : AB) :
Subst ASubst B
Equations
Instances For
    @[simp]
    theorem LeanSubst.Subst.map_rename_seq {A : Type u} {B : Type v} {f : AB} {k : Nat} {σ : Subst A} :
    map f (#k::σ) = #k::map f σ
    @[simp]
    theorem LeanSubst.Subst.map_replace_seq {A : Type u} {B : Type v} {f : AB} {t : A} {σ : Subst A} :
    map f (%t::σ) = %(f t)::map f σ
    @[simp]
    theorem LeanSubst.Subst.map_rename_noop {A : Type u} {B : Type v} {f : AB} {r : Ren} :
    map f r.to = r.to
    @[simp]
    theorem LeanSubst.Subst.map_I_noop {A : Type u} {B : Type v} {f : AB} :
    map f I = I
    @[simp]
    theorem LeanSubst.Subst.map_S_noop {A : Type u} {B : Type v} {f : AB} :
    map f S = S
    theorem LeanSubst.Subst.map_rename_compose_left {A : Type u} {B : Type v} {τ : Subst A} [SubstMap A] [SubstMap B] {f : AB} {r : Ren} :
    (∀ (t : A), f (t[r.to]) = f t[r.to])map f (τ r.to) = map f τ r.to
    @[simp]
    theorem LeanSubst.Subst.map_rename_compose_right {A : Type u} {B : Type v} {σ : Subst A} [SubstMap A] [SubstMap B] {f : AB} {r : Ren} :
    map f (r.to σ) = r.to map f σ
    theorem LeanSubst.Subst.map_S_compose_left {A : Type u} {B : Type v} {τ : Subst A} [SubstMap A] [SubstMap B] {f : AB} :
    (∀ (t : A), f (t[S]) = f t[S])map f (τ S) = map f τ S
    @[simp]
    theorem LeanSubst.Subst.map_S_compose_right {A : Type u} {B : Type v} {σ : Subst A} [SubstMap A] [SubstMap B] {f : AB} :
    map f (S σ) = S map f σ