Documentation
LeanSubst
.
Map
Search
return to top
source
Imports
Init
LeanSubst.Basic
Imported by
LeanSubst
.
Subst
.
map
LeanSubst
.
Subst
.
map_rename_seq
LeanSubst
.
Subst
.
map_replace_seq
LeanSubst
.
Subst
.
map_rename_noop
LeanSubst
.
Subst
.
map_I_noop
LeanSubst
.
Subst
.
map_S_noop
LeanSubst
.
Subst
.
map_rename_compose_left
LeanSubst
.
Subst
.
map_rename_compose_right
LeanSubst
.
Subst
.
map_S_compose_left
LeanSubst
.
Subst
.
map_S_compose_right
source
def
LeanSubst
.
Subst
.
map
{
A
:
Type
u_1}
{
B
:
Type
u_2}
(
f
:
A
→
B
)
:
Subst
A
→
Subst
B
Equations
LeanSubst.Subst.map
f
x✝¹
x✝
=
match
x✝¹
x✝
with |
LeanSubst.Subst.Action.su
t
=>
LeanSubst.Subst.Action.su
(
f
t
)
|
LeanSubst.Subst.Action.re
k
=>
LeanSubst.Subst.Action.re
k
Instances For
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_rename_seq
{
A
:
Type
u}
{
B
:
Type
v}
{
f
:
A
→
B
}
{
k
:
Nat
}
{
σ
:
Subst
A
}
:
map
f
(
#
k
::
σ
)
=
#
k
::
map
f
σ
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_replace_seq
{
A
:
Type
u}
{
B
:
Type
v}
{
f
:
A
→
B
}
{
t
:
A
}
{
σ
:
Subst
A
}
:
map
f
(
%
t
::
σ
)
=
%
(
f
t
)
::
map
f
σ
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_rename_noop
{
A
:
Type
u}
{
B
:
Type
v}
{
f
:
A
→
B
}
{
r
:
Ren
}
:
map
f
r
.
to
=
r
.
to
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_I_noop
{
A
:
Type
u}
{
B
:
Type
v}
{
f
:
A
→
B
}
:
map
f
I
=
I
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_S_noop
{
A
:
Type
u}
{
B
:
Type
v}
{
f
:
A
→
B
}
:
map
f
S
=
S
source
theorem
LeanSubst
.
Subst
.
map_rename_compose_left
{
A
:
Type
u}
{
B
:
Type
v}
{
τ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
{
r
:
Ren
}
:
(∀ (
t
:
A
),
f
(
t
[
r
.
to
]
)
=
f
t
[
r
.
to
]
)
→
map
f
(
τ
∘
r
.
to
)
=
map
f
τ
∘
r
.
to
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_rename_compose_right
{
A
:
Type
u}
{
B
:
Type
v}
{
σ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
{
r
:
Ren
}
:
map
f
(
r
.
to
∘
σ
)
=
r
.
to
∘
map
f
σ
source
theorem
LeanSubst
.
Subst
.
map_S_compose_left
{
A
:
Type
u}
{
B
:
Type
v}
{
τ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
:
(∀ (
t
:
A
),
f
(
t
[
S
]
)
=
f
t
[
S
]
)
→
map
f
(
τ
∘
S
)
=
map
f
τ
∘
S
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_S_compose_right
{
A
:
Type
u}
{
B
:
Type
v}
{
σ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
:
map
f
(
S
∘
σ
)
=
S
∘
map
f
σ