Documentation
LeanSubst
.
Coe
Search
return to top
source
Imports
Init
LeanSubst.Basic
Imported by
LeanSubst
.
Subst
.
Action
.
coe_map
LeanSubst
.
Subst
.
Action
.
instCoe
LeanSubst
.
Subst
.
coe_map
LeanSubst
.
Subst
.
instCoe
LeanSubst
.
Subst
.
CommutesWithSmap
LeanSubst
.
Subst
.
coe_cons
LeanSubst
.
Subst
.
coe_comp
source
def
LeanSubst
.
Subst
.
Action
.
coe_map
{
A
B
:
Type
}
[
Coe
A
B
]
:
Action
A
→
Action
B
Equations
↑
(
LeanSubst.re
k
)
=
LeanSubst.re
k
↑
(
LeanSubst.su
t
)
=
LeanSubst.su
(
Coe.coe
t
)
Instances For
source
instance
LeanSubst
.
Subst
.
Action
.
instCoe
{
A
B
:
Type
}
[
Coe
A
B
]
:
Coe
(
Action
A
)
(
Action
B
)
Equations
LeanSubst.Subst.Action.instCoe
=
{
coe
:=
LeanSubst.Subst.Action.coe_map
}
source
def
LeanSubst
.
Subst
.
coe_map
{
A
B
:
Type
}
[
Coe
A
B
]
:
Subst
A
→
Subst
B
Equations
↑
x✝¹
x✝
=
↑
(
x✝¹
x✝
)
Instances For
source
instance
LeanSubst
.
Subst
.
instCoe
{
A
B
:
Type
}
[
Coe
A
B
]
:
Coe
(
Subst
A
)
(
Subst
B
)
Equations
LeanSubst.Subst.instCoe
=
{
coe
:=
LeanSubst.Subst.coe_map
}
source
class
LeanSubst
.
Subst
.
CommutesWithSmap
(
A
B
:
Type
)
[
SubstMap
A
]
[
SubstMap
B
]
[
c
:
Coe
A
B
]
:
Prop
coe_commutes
(
a
:
A
)
(
σ
:
Subst
A
)
:
Coe.coe
a
[
σ
]
=
(
Coe.coe
a
)
[
Coe.coe
σ
]
Instances
source
@[simp]
theorem
LeanSubst
.
Subst
.
coe_cons
{
A
B
:
Type
}
{
a
:
Action
A
}
{
σ
:
Subst
A
}
[
Coe
A
B
]
:
Coe.coe
(
a
::
σ
)
=
Coe.coe
a
::
Coe.coe
σ
source
@[simp]
theorem
LeanSubst
.
Subst
.
coe_comp
{
A
B
:
Type
}
{
σ
τ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
[
Coe
A
B
]
[
i
:
CommutesWithSmap
A
B
]
:
Coe.coe
(
σ
∘
τ
)
=
Coe.coe
σ
∘
Coe.coe
τ