Documentation

LeanSubst.Laws

class LeanSubst.SubstMapId (S T : Type) [RenMap T] [SubstMap S T] :
Instances
    Instances
      class LeanSubst.SubstMapCompose (S T : Type) [RenMap S] [RenMap T] [SubstMap T T] [SubstMap S T] :
      Instances
        Instances
          Instances
            theorem LeanSubst.Ren.lift_eq_from_eq {S T : Type} [RenMap T] [SubstMap S T] {r : Ren} {σ : Subst T} :
            r = σr.lift = σ.lift
            @[simp]
            @[simp]
            @[simp]
            theorem LeanSubst.Subst.rewrite2 {T : Type} [RenMap T] [SubstMap T T] {σ : Subst T} :
            +0 σ = σ
            @[simp]
            theorem LeanSubst.Subst.rewrite3_replace {T : Type} [RenMap T] [SubstMap T T] {σ τ : Subst T} {s : T} :
            (su s :: σ) τ = su s[τ] :: σ τ
            @[simp]
            theorem LeanSubst.Subst.rewrite3_rename {T : Type} [RenMap T] [SubstMap T T] {s : Nat} {σ τ : Subst T} :
            (re s :: σ) τ = τ s :: σ τ
            @[simp]
            theorem LeanSubst.Subst.rewrite4 {T : Type} [RenMap T] [SubstMap T T] {s : Action T} {σ : Subst T} :
            +1 (s :: σ) = σ
            @[simp]
            theorem LeanSubst.Subst.rewrite5 {T : Type} [RenMap T] [SubstMap T T] {σ : Subst T} :
            σ 0 :: +1 σ = σ
            @[simp]
            theorem LeanSubst.Subst.apply_I_is_id {S T : Type} [RenMap T] [SubstMap S T] [SubstMapId S T] {s : S} :
            @[simp]
            theorem LeanSubst.Subst.rewrite_lift {T : Type} [RenMap T] [SubstMap T T] [SubstMapStable T] {σ : Subst T} :
            σ.lift = re 0 :: σ +1
            @[simp]
            theorem LeanSubst.Subst.rewrite6 {T : Type} [RenMap T] [SubstMap T T] [SubstMapId T T] {σ : Subst T} :
            σ +0 = σ
            @[simp]
            theorem LeanSubst.Subst.apply_compose_commute {S T : Type} [RenMap S] [RenMap T] [SubstMap T T] [SubstMap S T] [SubstMapCompose S T] {s : S} {σ τ : Subst T} :
            s[σ:_][τ:_] = s[σ τ:_]
            @[simp]
            theorem LeanSubst.Subst.rewrite7 {T : Type} [RenMap T] [SubstMap T T] [SubstMapCompose T T] {σ τ μ : Subst T} :
            (σ τ) μ = σ τ μ
            @[simp]
            theorem LeanSubst.Subst.hrewrite1 {S T : Type} [RenMap T] [SubstMap S T] [SubstMapId S T] {σ : Subst S} :
            σ +0 = σ
            @[simp]
            theorem LeanSubst.Subst.hcomp_ren_left {S T : Type} [RenMap S] [RenMap T] [SubstMap S T] (r : Ren) (σ : Subst T) :
            r σ = r
            @[simp]
            theorem LeanSubst.Subst.hrewrite2 {S T : Type} [RenMap S] [RenMap T] [SubstMap S T] {σ : Subst T} :
            +0 σ = +0
            @[simp]
            theorem LeanSubst.Subst.hrewrite3 {S T : Type} [RenMap S] [RenMap T] [SubstMap S T] {σ : Subst T} :
            +1 σ = +1
            @[simp]
            theorem LeanSubst.Subst.hrewrite4 {S T : Type} [RenMap T] [SubstMap S T] {x : Nat} {σ : Subst S} {τ : Subst T} :
            (re x :: σ) τ = re x :: σ τ
            theorem LeanSubst.Subst.hcomp_dist_ren_left {S T : Type} [RenMap S] [RenMap T] [SubstMap S S] [SubstMap S T] (r : Ren) {σ : Subst S} {τ : Subst T} :
            (r σ) τ = r σ τ
            @[simp]
            theorem LeanSubst.Subst.hrewrite5 {S T : Type} [RenMap S] [RenMap T] [SubstMap T T] [SubstMap S T] [SubstMapCompose S T] {σ : Subst S} {τ μ : Subst T} :
            (σ τ) μ = σ τ μ
            theorem LeanSubst.Subst.hcomp_distr_ren_right {S T : Type} [RenMap S] [RenMap T] [SubstMap S S] [SubstMap S T] [SubstMapRenCommute S T] (r : Ren) (σ : Subst S) (μ : Subst T) :
            (σ r) μ = (σ μ) r
            @[simp]
            theorem LeanSubst.Subst.hrewrite6 {S T : Type} [RenMap S] [RenMap T] [SubstMap S S] [SubstMap S T] [SubstMapRenCommute S T] (r : Ren) (σ : Subst S) :
            (σ r) +1 = (σ +1) r
            @[simp]
            theorem LeanSubst.Subst.apply_hcompose {S T : Type} [RenMap S] [RenMap T] [SubstMap S S] [SubstMap S T] [SubstMapHetCompose S T] {s : S} {σ : Subst S} {τ : Subst T} :
            s[σ][τ:_] = s[τ:_][σ τ]
            @[simp]
            theorem LeanSubst.Subst.hrewrite7 {S T : Type} [RenMap S] [RenMap T] [SubstMap S S] [SubstMap S T] [SubstMapHetCompose S T] {σ τ : Subst S} (μ : Subst T) :
            (σ τ) μ = (σ μ) τ μ
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For