Documentation
LeanSubst
.
Map
Search
return to top
source
Imports
Init
LeanSubst.Basic
Imported by
LeanSubst
.
Subst
.
map
LeanSubst
.
Subst
.
map_rename_seq
LeanSubst
.
Subst
.
map_replace_seq
LeanSubst
.
Subst
.
map_rename_noop
LeanSubst
.
Subst
.
map_I_noop
LeanSubst
.
Subst
.
map_S_noop
LeanSubst
.
Subst
.
map_rename_compose_left
LeanSubst
.
Subst
.
map_rename_compose_right
LeanSubst
.
Subst
.
map_S_compose_left
LeanSubst
.
Subst
.
map_S_compose_right
source
def
LeanSubst
.
Subst
.
map
{
A
B
:
Type
}
(
f
:
A
→
B
)
:
Subst
A
→
Subst
B
Equations
LeanSubst.Subst.map
f
x✝¹
x✝
=
match
x✝¹
x✝
with |
LeanSubst.su
t
=>
LeanSubst.su
(
f
t
)
|
LeanSubst.re
k
=>
LeanSubst.re
k
Instances For
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_rename_seq
{
A
B
:
Type
}
{
f
:
A
→
B
}
{
k
:
Nat
}
{
σ
:
Subst
A
}
:
map
f
(
re
k
::
σ
)
=
re
k
::
map
f
σ
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_replace_seq
{
A
B
:
Type
}
{
f
:
A
→
B
}
{
t
:
A
}
{
σ
:
Subst
A
}
:
map
f
(
su
t
::
σ
)
=
su
(
f
t
)
::
map
f
σ
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_rename_noop
{
A
B
:
Type
}
{
f
:
A
→
B
}
{
r
:
Ren
}
:
map
f
↑
r
=
↑
r
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_I_noop
{
A
B
:
Type
}
{
f
:
A
→
B
}
:
map
f
+0
=
+0
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_S_noop
{
A
B
:
Type
}
{
f
:
A
→
B
}
:
map
f
+1
=
+1
source
theorem
LeanSubst
.
Subst
.
map_rename_compose_left
{
A
B
:
Type
}
{
τ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
{
r
:
Ren
}
:
(∀ (
t
:
A
),
f
t
[
↑
r
]
=
(
f
t
)
[
↑
r
]
)
→
map
f
(
τ
∘
↑
r
)
=
map
f
τ
∘
↑
r
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_rename_compose_right
{
A
B
:
Type
}
{
σ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
{
r
:
Ren
}
:
map
f
(
↑
r
∘
σ
)
=
↑
r
∘
map
f
σ
source
theorem
LeanSubst
.
Subst
.
map_S_compose_left
{
A
B
:
Type
}
{
τ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
:
(∀ (
t
:
A
),
f
t
[
+1
]
=
(
f
t
)
[
+1
]
)
→
map
f
(
τ
∘
+1
)
=
map
f
τ
∘
+1
source
@[simp]
theorem
LeanSubst
.
Subst
.
map_S_compose_right
{
A
B
:
Type
}
{
σ
:
Subst
A
}
[
SubstMap
A
]
[
SubstMap
B
]
{
f
:
A
→
B
}
:
map
f
(
+1
∘
σ
)
=
+1
∘
map
f
σ