Documentation

LeanSubst.Map

def LeanSubst.Subst.map {A B : Type} (f : AB) :
Subst ASubst B
Equations
Instances For
    @[simp]
    theorem LeanSubst.Subst.map_rename_seq {A B : Type} {f : AB} {k : Nat} {σ : Subst A} :
    map f (re k::σ) = re k::map f σ
    @[simp]
    theorem LeanSubst.Subst.map_replace_seq {A B : Type} {f : AB} {t : A} {σ : Subst A} :
    map f (su t::σ) = su (f t)::map f σ
    @[simp]
    theorem LeanSubst.Subst.map_rename_noop {A B : Type} {f : AB} {r : Ren} :
    map f r = r
    @[simp]
    theorem LeanSubst.Subst.map_I_noop {A B : Type} {f : AB} :
    @[simp]
    theorem LeanSubst.Subst.map_S_noop {A B : Type} {f : AB} :
    theorem LeanSubst.Subst.map_rename_compose_left {A B : Type} {τ : Subst A} [SubstMap A] [SubstMap B] {f : AB} {r : Ren} :
    (∀ (t : A), f t[r] = (f t)[r])map f (τ r) = map f τ r
    @[simp]
    theorem LeanSubst.Subst.map_rename_compose_right {A B : Type} {σ : Subst A} [SubstMap A] [SubstMap B] {f : AB} {r : Ren} :
    map f (r σ) = r map f σ
    theorem LeanSubst.Subst.map_S_compose_left {A B : Type} {τ : Subst A} [SubstMap A] [SubstMap B] {f : AB} :
    (∀ (t : A), f t[+1] = (f t)[+1])map f (τ +1) = map f τ +1
    @[simp]
    theorem LeanSubst.Subst.map_S_compose_right {A B : Type} {σ : Subst A} [SubstMap A] [SubstMap B] {f : AB} :
    map f (+1 σ) = +1 map f σ