Documentation

Lilac.Vect.Small

theorem Fin.unfold_ofNat1 {n : Nat} :
1 = succ 0
theorem Fin.unfold_ofNat2 {n : Nat} :
2 = (succ 0).succ
def Fin.cases1 {motive : Fin 1Sort u} (h : motive 0) (v : Fin 1) :
motive v
Equations
Instances For
    def Fin.cases2 {motive : Fin 2Sort u} (h1 : motive 0) (h2 : motive 1) (v : Fin 2) :
    motive v
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Fin.cases3 {motive : Fin 3Sort u} (h1 : motive 0) (h2 : motive 1) (h3 : motive 2) (v : Fin 3) :
      motive v
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem Vect.eta1 {T : Type u_1} (t : Vect 1 T) :
        [t 0] = t
        @[simp]
        theorem Vect.eta2 {T : Type u_1} (t : Vect 2 T) :
        [t 0, t 1] = t
        @[simp]
        theorem Vect.eta3 {T : Type u_1} (t : Vect 3 T) :
        [t 0, t 1, t 2] = t
        @[simp]
        theorem Vect.inv1 {T : Sort u_1} {a b : Vect 1 T} :
        a = b a 0 = b 0
        @[simp]
        theorem Vect.inv2 {T : Sort u_1} {a b : Vect 2 T} :
        a = b a 0 = b 0 a 1 = b 1
        @[simp]
        theorem Vect.inv3 {T : Sort u_1} {a b : Vect 3 T} :
        a = b a 0 = b 0 a 1 = b 1 a 2 = b 2