Documentation

LeanStlc.Reduction

inductive Red :
TermTermProp
Instances For
    Instances For
      inductive ParRed :
      TermTermProp
      Instances For
        Instances For
          theorem ParRed.refl {t : Term} :
          t ~p> t
          theorem ParRed.subst {t t' : Term} (σ : LeanSubst.Subst Term) :
          t ~p> t't[σ] ~p> t'[σ]
          theorem ParRed.subst_action {x : Nat} {σ σ' : LeanSubst.Subst Term} (r : LeanSubst.Ren) :
          σ x ~ps> σ' x(σ r.to) x ~ps> (σ' r.to) x
          theorem ParRed.subst_red_lift {σ σ' : LeanSubst.Subst Term} :
          (∀ (x : Nat), σ x ~ps> σ' x)∀ (x : Nat), σ.lift x ~ps> σ'.lift x
          theorem ParRed.hsubst {t t' : Term} {σ σ' : LeanSubst.Subst Term} :
          (∀ (x : Nat), σ x ~ps> σ' x)t ~p> t't[σ] ~p> t'[σ']
          theorem ParRed.triangle {t s : Term} :
          t ~p> ss ~p> complete t
          theorem Red.subst {t t' : Term} (σ : LeanSubst.Subst Term) :
          t ~> t't[σ] ~> t'[σ]
          theorem Red.subst_action {x : Nat} {σ σ' : LeanSubst.Subst Term} (r : LeanSubst.Ren) :
          σ x ~s> σ' x(σ r.to) x ~s> (σ' r.to) x
          theorem Red.subst_red_lift {σ σ' : LeanSubst.Subst Term} :
          (∀ (x : Nat), σ x ~s> σ' x)∀ (x : Nat), σ.lift x ~s> σ'.lift x
          theorem Red.seq_implies_par {t t' : Term} :
          t ~> t't ~p> t'
          theorem Red.par_implies_seqs {t t' : Term} :
          t ~p> t'LeanSubst.Star Red t t'
          theorem Red.subst_arg {t : Term} {σ σ' : LeanSubst.Subst Term} :
          (∀ (x : Nat), σ x ~s> σ' x)LeanSubst.Star Red (t[σ]) (t[σ'])
          theorem Red.preservation_of_neutral_step {t t' : Term} :
          Neutral tt ~> t'Neutral t'