Documentation

LeanSubst.List

def LeanSubst.List.rmap {S : Type} [i : RenMap S] (r : Ren) :
List SList S
Equations
Instances For
    def LeanSubst.List.smap {S T : Type} [SubstMap S T] (σ : Subst T) :
    List SList S
    Equations
    Instances For
      @[simp]
      theorem LeanSubst.List.smap_nil {S T : Type} [SubstMap S T] {σ : Subst T} :
      @[simp]
      theorem LeanSubst.List.smap_cons {S T : Type} [SubstMap S T] {x : S} {tl : List S} {σ : Subst T} :
      (x :: tl)[σ:_] = x[σ:_] :: tl[σ:_]
      @[reducible, inline]
      abbrev LeanSubst.List.dep_subst_get1 {S : Type} [SubstMap S S] (σ : Subst S) :
      List SNatOption S
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem LeanSubst.List.dep_subst_get_zero {S T : Type} [SubstMap S T] {σ : Subst T} {A : S} {Γ : List S} :
                dep_subst_get σ (A :: Γ) 0 = some A[σ:_]
                @[simp]
                theorem LeanSubst.List.dep_subst_get_succ {S T : Type} [SubstMap S T] {σ : Subst T} {A : S} {Γ : List S} {x : Nat} :
                dep_subst_get σ (A :: Γ) (x + 1) = (dep_subst_get σ Γ x)[σ:_]