Equations
- StrongNormalizaton.LR ⊤ = fun (t : Term) => SNi SnVariant.nor t
- StrongNormalizaton.LR (A -t> B) = fun (t : Term) => ∀ (r : LeanSubst.Ren) (v : Term), StrongNormalizaton.LR A v → StrongNormalizaton.LR B (t[↑r] :@ v)
Instances For
Equations
- StrongNormalizaton.GR x✝¹ x✝ = ∀ (x : Nat) (T : Ty), x✝¹[x]? = some T → StrongNormalizaton.LR T ↑(x✝ x)
Instances For
Equations
- Γ ⊨s t : A = ∀ (σ : LeanSubst.Subst Term), StrongNormalizaton.GR Γ σ → StrongNormalizaton.LR A t[σ]
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
StrongNormalizaton.cr
{A : Ty}
:
(∀ (t : Term), LR A t → SNi SnVariant.nor t) ∧ (∀ (t : SnIndices SnVariant.neu), SNi SnVariant.neu t → LR A t) ∧ ∀ (t t' : Term), SNi SnVariant.red (t, t') → LR A t' → LR A t
theorem
strong_normalization_inductive
{Γ : List Ty}
{t : Term}
{A : Ty}
:
Γ ⊢ t : A → SNi SnVariant.nor t